Séance technique Roches Tendres, Sols Indurés

Analyse microstructurale de la transition frottement - cohésion dans les sables biocimentés

F. Emeriault, C. Geindreau, A. Naillon, M. Abbas, M. Sirkis

Jeudi 18 Mars 2021

CIERCI

Grenoble

BOREAL

Biocimentation

Biocimentation

Bacteries + solution calcifiante S.pasteurii + Urée + Chlorure de calcium

> Précipitation de Calcite $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3$

Modification de la Microstructure

(Cheng et al, 2016)

Propriétés physiques et mécaniques

- Cohésion
- Angle de frottement
- Propriétés élastiques
- Perméabilité

(Cheng et al, 2013, Feng et al, 2015, Dursaisamy, 2015, Al Qabany, et al 2013, Dadda et al 2017)

Objectifs

Données expérimentales

	Mean	Uniformity	Minimum	Maximum	Weight of	
Sand	Diameter	coefficient	void ratio	void ratio	sand grains	Shape
	$D_{50} (mm)$	C_u	e_{min}	e_{max}	$ ho_{ m s}~({ m Kg}/m^3)$	
Fontainbleau sand (NE34)	0.21	1.5	0.549	0.886	2650	Sub- rounded

	Subsample	$2\mathrm{T}$	2MB	13TT	11BB	13BT	13MB
	Volume fraction of calcite $f_{\rm c}(\%)$	1.9	3.2	4.7	6.2	8.8	14.9
	Mass fraction of calcite $m_{\rm c}(\%)$	3	5	7	9	12.7	16.9
	Initial porosity ϕ_0	40	38	38	38	37	38
	Solid volume fraction f_s	0.62	0.63	0.65	0.66	0.69	0.75
	Total contact surface area $S_{\rm a}(\mu m^2)$	875	1236	2365	1809	2415	5053
	Mean cohesive contact surface $S_{\rm c}(\mu m^2)$	307	704	1248	1080	1607	3511
÷	Mean cohesive contact radius $a(\mu m)$	9.9	15	20	18.5	22.6	33.4
	Mean coordination number \overline{Z}_{a}	7.1	7.8	8.5	8.5	8.1	9.2

4

Observations expérimentales à l'échelle macroscopique

Observations expérimentales à l'échelle macroscopique

Processus d'analyse d'images 3D

3D image : identification des phases Séparation des grains Uisilog Détermination des contacts et surfaces associées Matlab Détermination des contacts et surfaces associées 0.5 mm 0.5 mm 255

Propriétés microstructurales moyennes

- Fraction volumique de calcite
- Porosité
- Surface spécifique (totale ou calcite seulement)

- Nombre de coordination
- Surface de contact (totale, % de calcite..)
- Type de contact (cohésif, pont de calcite)
- Orientation de contact

Imagerie tomographie RX vs SEM

Propriétés de la microstructure

Nombre et type de contacts

- Nt nombre total
- Nc nombre de contacts cimentés

Surface spécifique totale

(Sg + Sc)/V Surface spécifique de calcite Sc/V

Surface de contact – surface de contact cimenté

Sc surface totale de contact cimenté Sb surface totale de contact avant traitement

Lien entre propriétés de la microstructure et résistance mécanique

Distribution des types de contact

- Pour les **fractions de calcite moyennes et élevées**, tous les contacts sont cohésifs:
- contacts initialement existants
- contacts créés par le processus de biocalcification
- Pour les **fractions de calcite faibles**, une partie seulement des contacts sont calcifiés (les autres restent frottant) mais ils représentent environ 50% de la surface de contact.

Surface de contact

Modélisation numérique DEM – Loi de contact

Loi de contact cohésive définie dans Yade (Bourrier et al. 2013)

Rigidités de contact élastiques linéaires:

- K_n rigidité normale
- *K_s* rigidité tangentielle ou en cisaillement
- E module d'Young
- D diameter de la particule
- v rapport de rigidité

Résistance du contact définie par le critère classique de Mohr-Coulomb

Adhésion normale

 $f_n = a_n = S_c \sigma_{ten}$

- S_c surface de contact cohesive d'un lien cimenté
- σ_{ten} résistance en traction, ici σ_{ten} = 2.75 MPa

<u>Adhésion tangentielle</u> $a_s = \frac{s_\tau}{s_n} a_n$

Les paramètres de rigidité normale et en cisaillement S_n et S_{τ} sont calculées avec les équations de Dvorkin and Nur (1996).

Subsample	$a(\mu m)$	S_n	S_{τ}	$S_{ au}/S_n$
2T	19.33	0.046	0.112	2.43
13TT	34.81	0.080	0.193	2.41
13MB	52.34	0.118	0.277	2.35
			Average	2.40

Cohésion normale
$$C_n = \frac{S_c \sigma_{ten}}{min(R_1, R_2)^2}$$

Cohésion en cisaillement

$$C_s = \frac{S_\tau}{S_n} C_n = 2.4 C_n$$

Prise en compte de la distribution des surfaces de contact cohésives

La distribution des **surfaces de contact cohésives** est obtenue en soustrayant à chaque surface de contact **après traitement** la surface de contact **avant traitement**.

La surface de contact cohésive moyenne $\overline{S_c}$ et l'écarttype correspondant σ_{std} sont déterminés pour chaque échantillon.

Ces informations sont utilisées pour construire une distribution log-normale équivalente.

Des valeurs prises aléatoirement dans cette distribution sont affectées aux contacts entre grains dans les simulations numériques.

Rigidité de contact

- La rigidité normale du contact **Kn** dépend de la quantité de calcite précipitée au niveau du contact.
- Selon une approche de contact de Hertz, la rigidité est proportionelle au rayon du contact **a**
- Ce rayon est identifié à partir des images 3D en relation avec le taux de calcite.

La valeur de E considérée dans les calculs Yade se base sur la relation entre Kn et a = fonction de f_c

Sable non traité

Paramètres calibrés pour une pression de confinement de 50 kPa:

- Module d'Young: E = 80 MPa
- $\varphi = 20^{\circ}$ Angle de frottement au contact:

Taux de calcite élevé

Paramètres:

Module d'Young: E = 1 GPa

Echantillon 13MB = 16,9% calcite

- Angle de frottement de contact: $oldsymbol{arphi}=20^\circ$
- Adhésion normale: Calculée sur la base de la distribution réelle des surfaces de contacts
 - Adhesion en cisaillement: $a_s = 2.4 a_n$
 - Pourcentage of contacts cohésifs: 100%

€3SR

Taux de calcite faible

Paramètres:

- Module d'Young: E = 300 MPa
- Angle de frottement de contact: $\boldsymbol{\varphi} = \mathbf{20}^{\circ}$
- Adhésion normale: Calculée sur la base de la distribution réelle des surfaces de contacts
 - Adhesion en cisaillement: $a_s = 2.4 a_n$
 - Pourcentage of contacts cohésifs: 85 %

Taux de calcite faible

Paramètres:

- Module d'Young: E = 300 MPa
- Angle de frottement de contact: $oldsymbol{arphi}=20^\circ$

- Echantillon 2T = 3% calcite
- Adhésion normale: Calculée sur la base de la distribution réelle des surfaces de contacts
 - Adhesion en cisaillement: $a_s = 2.4 a_n$
 - Pourcentage of contacts cohésifs: 20%

18

Propriétés mécaniques

€ SR

Evolution de la quantité de calcite numérique/réelle

Influence du % de contacts cimentés

Conclusion

- Images 3D de sable biocimentés obtenues par tomographie RX à haute resolution
- Développement de méthodes de traitement d'images spécifiques
 - Propriétés microstructurales moyennes
 - Propriétés microstructurales discrètes (contact)
- Identification de la transition entre frottement cohésion et lien avec le pourcentage de contacts cimentés
- Application de la modélisation par DEM avec les propriétés de contact identifiées expérimentalement comme données d'entrée
- Bonne comparaison avec les résultats expérimentaux
- Nécessité de considerer le pourcentage de contacts réellement cimentés pour les faibles taux de calcite

Merci de votre attention !

Des questions ?

